Comparison of Surrogate-Based Uncertainty Quantification Methods for Computationally Expensive Simulators
نویسندگان
چکیده
منابع مشابه
Evolutionary Optimization of Computationally Expensive Problems via Surrogate Modeling
We present a parallel evolutionary optimization algorithm that leverages surrogate models for solving computationally expensive design problems with general constraints, on a limited computational budget. The essential backbone of our framework is an evolutionary algorithm coupled with a feasible sequential quadratic programming solver in the spirit of Lamarckian learning.We employ a trust-regi...
متن کاملUncertainty Analysis for Computationally Expensive Models with Multiple Outputs
Bayesian MCMC calibration and uncertainty analysis for computationally expensive models is implemented using the SOARS (Statistical and Optimization Analysis using Response Surfaces) methodology. SOARS uses a radial basis function interpolator as a surrogate, also known as an emulator or meta-model, for the logarithm of the posterior density. To prevent wasteful evaluations of the expensive mod...
متن کاملComparison of Numerical Methods in Uncertainty Quantification
Abstract: This paper presents and compares the results obtained using several methods for Stochastic Computations, used in Uncertainty Quantification. We practically present the methods using a simple ODE model. The focus is on both intrusive and non-intrusive methods, namely the Monte Carlo method, along with methods based on generalized polynomial chaos(gPC) methodology. Moreover, we asses th...
متن کاملSOP: parallel surrogate global optimization with Pareto center selection for computationally expensive single objective problems
This paper presents a parallel surrogate-based global optimization method for computationally expensive objective functions that is more effective for larger numbers of processors. To reach this goal, we integrated concepts from multi-objective optimization and tabu search into, single objective, surrogate optimization. Our proposed derivative-free algorithm, called SOP, uses non-dominated sort...
متن کاملA multi-fidelity surrogate-model-assisted evolutionary algorithm for computationally expensive optimization problems
Integrating data-driven surrogate models and simulation models of di erent accuracies (or delities) in a single algorithm to address computationally expensive global optimization problems has recently attracted considerable attention. However, handling discrepancies between simulation models with multiple delities in global optimization is a major challenge. To address it, the two major contrib...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM/ASA Journal on Uncertainty Quantification
سال: 2017
ISSN: 2166-2525
DOI: 10.1137/15m1046812